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1. INTRODUCTION

Depending on the nature of certain problems, geometers found it expedient to
look beyond the strict Cartesian systems of coordinates.

Lamé's investigations mark a brilliant achievement in the history of curvi-
linear systems. In addition to his contributions to different’al geometry, his now
classical reference [Lamé, 1837) introduced for the first time the idea of curvilinear
elliptic coordinates (today the name "ellipsoidal" is generally accepted). The same
basic theory has been used by geodesists up to recent times [Molodenskii et al., 1960].

After Lamé, scores of mathematicians became interested in the subject,
improving and generalizing the methods. Among them, [Darboux, 1898] some sixty
years later, wrote several papers originating the concept of moving frames, which
later was universalized by [Cartan, 1935].

In modern times, mathematics has progressed toward the maximum degree
of generalization. With the advent of Absolute Differential Geometry, the study of
such abstract topics as m-dimensional manifolds in n-space and the concepts of ten-
sor and differential forms have drastically revolutionized the field.

Even in geodesy some pioneering steps in thece areas have been taken [ Marussi,
1949], [Hotine, 1969}, [Grafarend, 1975], culminating in the periodic celebration of
the Hotine Symposiums on Mathematical Geodesy.

The present report benefits from some of the above methods in order to develop
differential transformations between Cartesian and curvilinear orthogonal coordinates.
However, only matrix algebra is used for the presentation of the basic concepts. The
fact that second order Cartesian tensors reduce to 3 x 3 matrices frequently is over-
looked.

After defining in Chapter 2 the reference systems used in this work, Chapter 3
introduces the rotation (R), "metric" (H) and Jacobian (J) matrices of the transforma-
tions between Cartesian and curvilinear coordinate systems. A value of R as a function
of H and J is presented. Likewise an analytical expression for J*as a function of H*



and R is obtained. Subsequently, in Chapter 4, emphasis is placed on showing that
the difterential equations published in the English translation of [Molodenskii et al.,
1960] are equivalent to conventional similarity transformations. This dissipates the
confusion created recently by some authors [Badekas, 1969], Krakiwsky and Thompson,
1974] who credited [Molodenskii et al., 1962] with a model they never wrote. A
discussion of scaling methods follows.

Chapter 5 introduces ellipsoidal coordinates, to which the general theory
developed in Chapter 3 is applied. Finally, differential transformations between

ellipsoidal and geodetic coordinates are established.



2. REFERENCE COORDINATE SYSTEMS

The principal problem of geodesy may be stated as follows [Hirvonen, 196v}:
"Find the space coordinates of any point P at the physical surface S of the earth
when a sufficient number of geodetic operations have been carried out along S."

Therefore, in order to know the position of P, the definition of an appro-
priate system of coordinates is of primary importance.

Due to the nature of the rotational motions of the earth and to other geodynamic
problems, a rigorously defined system of the accuracy of our current observational
capabilities, is not presently available. A recent colloquium organized by the IAU
(International Astronomical Union) in Torufi, Poland, was the first attempt to coor-
dinate the work of different groups in the international scientific community for the
future definition and selection of reliable reference frames [Kotaczek and Weiffen-
bach, 1974].

Inh the present report, only those earth fixed coordinate systems (Terrestrial
Systems) which are commonly used in geodesy will be described. The reader is
assumed to be familiar with other celestial systems used frequently in astronomy
and conveniently defined, for example, in [Mueller, 1969). With regard to the
dynamically defined coordinate systems, generally best suited for geophysical prob-
lems, see the description in [Munk and MacDonald, 1960].

In the first place, a broad division between Cartesian and curvilinear systems
may be made. Due to the nature of the basic reference surface in geodetic problems,
sometimes it is converient to use curvilinear coordinates instead of spatial rectangular
coordinates. This is especially true when the ellipsoid is used as the basic reference.

In the following sections the coordinate systems used in this report and their

notation will be presented in order to avoid any possible confusion.



2.1

(x, ¥y, 2) =

Quasi-Geocentric Cartesian Systems

"Geographic' or Mean Terrestrial System

Origin:  Close to the geocenter (center of mass of the earth, including
the atmosphere)

Z axis: Directed toward the CIO (Conventional International Origin) as
defined by the IPMS (International Polar Motion Service) and
the BIH (Bureau International de 1'Heure).

x axis:  Passes through the point of zero longitude as defined by the 1968
BIH system {Guinot et al., 1971].

y axis: Forms a right-handed coordinate system with the x and z axes.

A redefinition of this system is plausible in the future [see Kolaczek and

Weiffenbach, 1974, pp. 34-37].

World Systems. These are systems defined by particular satellite solu-

tions accomplished by different organizations. Two wide categories can
be mentioned:

Dynamic Solutions (Geocentric)

(X, ¥ Z)ggrc Goddard Space Flight Center

(X, ¥» Z)sa0 = Smithsonian Astrophysical Observatory

(X, ¥y Z)nyo = Naval Weapons Surface Center

Geometric Solutions (Non-Geocentric)

(X, ¥, Z)nos = National Ccean Survey

(Xs ¥y Z)ogu = Ohio Rate University

For a complete description of the different published solutions and their
corresponding references, consult [Mueller, 1975].

Some as yet unexplained differences between the orientation of the world
systems with respect to the geograrhic system are reported in [Mueller
et al., 1973].
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(u, v, w) =

Geodetic Systems (one for each particular local datum)

Origin: The center of the reference ellipsoid used for defining the
datum in question,

w axis: Coincides with the semiminor axis b of the reference ellipsoid.

u axis: Passes through the point (A =0, ¢© = 0)

v axis: Forms a right-handed frame with u and w axes.

Errors in the deflections of the vertical adopted at the datum origin, in

the cbserved astronomic latitude and longitude, and the adoption of

improper parameters of the referenced ellipsoid shift the origin of this

system from the geocenter by amounts 6u, 6v, dw.

The improper application of the Laplace condition and errors in the

astronomic a: imuth itroduce non-parallelism between the geodetic

and geographic systems. The relationship is established through the

rotations 6¢, 6y, Sw. See Fig. 2.1. Examples of this type of system

defined through the datum coordinates are:

(4, Vv, Wyap - North American Datum

(u, vy W)gyp - European Datum

2.2 Curvilinear Systems of Coordinates

(A, 0, h) =

Curvilinear Geodetic Coordinates

A Geodetic longitude. Angle between the plane uw and the
geodetic meridian plane of the point P measured positive
toward the east (see Fi, 2.] and 2, 2).
0sA=<27

o: Geodetic latitude. Angle between the normal to the ellipsoid

at P and the plane uv.

N

SQOs

ol
[F1E]

h: Geodetic height. Distance along the normal to the reference

ellipsoid between P and the s1.: "ace of this ellipsoid.

6



(A, B, u) =

(A, @, H) =

2.3

Curvilinear Ellipsoidal (Rotational) Coordinates (as defined in
[Heiskanen and Moritz, 1967])

A: The same as above (i.e. geodetic longitude = ellipsoidal
longitude).

B: Ellipsoidal or reduced latitude (see Fig. 5.1).

u: Semiminor axis of the confocal ellipsoid through P.

Natural or Astronomical Coordinates

This curvilinear coordinate system refers to the instantaneous terres-
trial system. Inthis report only the reduced astronomic coordinates
will be used. Consult [Mueller, 1969)] for the corresponding definitions.
AX: Reduced astronomic longitude

©o*: Reduced astronomic latitude

Local Frames of Reference

(n, &,8) =

Local Geodetic Frame

Origin: The point P(A, ©, h). Inthe case when P is on the
earth surface, the local coordinate system will be called
topoceitric.

f axis:  Normal through P to the reference ellipsoid. The positive
sign in the outward direction.

naxis:  Normal to { and the geodetic meridian plaze (vhen h =0,
tangent to the geodetic parallel of P.) Posiiive in the direc-
tion of increasing A.

£ axis: Perpendicular to n and £ forming a right-hande.. system
(when h = 0, tangent to the geodetic meridian of P.) Positive
in the direction of increasing ¢. See Figures 2.1 and 2.2,

Local Ellipsoidal Frame
Origin: At the point P (X, 8, E'). The above definition for the topo-

centric frame w.pplies here also.

7



€ axis: Normal to the confocal ellipsoid of semiminor axis K, which
passes through P. Pogitive in the outward direction.

;) axis: Normal to Eand the ellipsoidal meridian plane of P (i.e.,
tangent to the ellipsoidal parallel of P.) Positive in the
direction of increasing A .

E'axis: Normal to 17 and the confocal hyperbolo.d passing through P
(i.e., tangent to the confocal ellipsoid at P.) Positive in the

direction of increasing B.

(n*, £*, £*) = Local Asironomic Frame
Origin: At point P,

{* axis: Normal through P to the geop of P (i.e. tangent at P to the
plumb line passing through P.) Positive cutwards.

n* axis: Normal to {* and to the mean astr ynomical meridian f P
(positive in the direction of increasing astronomic 'ou,,tude.)

£* axis: Normal to {* and n* forming a right-handed system. Positive
in the direction of increas ag astronomic longitude.

In the ideal case of parallelism hetween the (x, y, z) and (u, v, w)

systems, the transformation b ./c¢en the astronomic and geodetic

coordinates - done through the deflection of the vertical components

7' and §'.



3. CURVILINEAR GEODETIC COORDINATES

3.1 General Comments

Consider three families of surfaces represented by the parametric equations:
A=Af, v, W) ©=0(u, v, w) h = h(u, v, w) (3.1-1)

where (u, v, w) are Cartesian coordinates. This is really a transformation betweon
points in the (u, v, w) Euclidean g2 space lying in a certain domain and points in a
certain domain in the (A, ¢, h) space, generally a "non-flat'" space. These domains
naturally will exclude all singular points of the transformation.

Assuming now that X, ¢, h are variable parameters, for each constant value
of the paraineters the family of surfaces will define three "coordinate surfaces' inter-
secting in "coordinate lines or curves'. In general, one surface of each family passes
through a chosen point and a neighboring point will be determined by neighboring values
of the parameters, thus dividing the space into elementary cells which in general are
not rectangular parallelepipedons. H to each value of (u, v, w) corresponds a unique
value of (A, ©, h), then any point P is uniquely determined by the three surfaces
through the point.

The quantities \, ¢, h are called the "curvilinear coordinates’ of the point P.

The most convenient system of curvilinear coordinates for geodetic applica-
tions are determined by families cf surfaces which intersect each other everywhere
at right angles. In such a case we have a "triply-orthogonal' family of surfaces or
an "orthogonal curvilinear system'.

Assuming that (3.1-1) represents any set of orthogonal curviiinear coordi-
nates, in that which follows, the general theory is going to be particularized, first
to the very well-known set of geodetic coordinates and later to some other curvilin-
ear orthogonal systems L3ed frequently in geodesy and geophysics. All the matrix
relationships derived, even though deduced for a particular curvilinear geodetic

system, may be applied to any set of orthogonal curvilinear coordinates.



> 3 -
3.2 The Local Base (e, €., €3)

The coordinate transformation between the curvilinear geodetic coordinates
and the Cartesian coordinates may be expressed symbolically by

(A’ (p’ h) ( (u’ v’ W)
a,f

and is defined by the well-known matrix relation
u (N +h)cospcos )\
v| =] (N +h)cospsinA (3.2-1)
w LINA - €) +hlsino |q,n

where N, the principal radius of curvature in the prime vertical plane is given by

a

N = (1 - °sin” )

172 (3-2'2)

and

e = 2f-f exactly.

Relation (3.2-1) can also be expressed in general by the usual parametric form:
u=u(A, @, h v=v(A, 0, h w=w(\, ©, h) 3.2-3)
In order to have a coordinate system of practical value, the following conditions will
be satisfied everywhere except at isolated singular points (e.g., the poles):
a) Each point (u, v, w) has a unique set of curvilinear coordinates;
that is, there is a one-to-one correspondence between the (A, ¢, h)
and (u, v, w) coordinates. Therefore, the Jacobian determinant of
truusformation (3.2-3) is not zero.
b) Equation (3.2-3) can be solved for A, ¢, h giving the inverse transfor-
mation:
A=Au, v, W) ©=¢pl, v, w) h=h(u, v, w) (3.2-4)
This cannot be obtained by an explicit gimple closed expression, but can
be implemented through iteration [Heiskanen and Moritz, 1967}, [Rapp,
1975], [Bartelme and Meissl, 1975] or directly [Paul, 1973) and [ Benning,
1974].

10



d In addition to these conditions, the tangents at a point P to the A, ¢, h
"coordinate lines" through this point are perpendicular, so that the

curvilinear system is orthogonal.

Equation (3.2-3) in vector notation may be written as:

- >
r = r(\, o, h) (3.2-5)
where
- - - ->
r = ui +vj +twk (3.2-6)
- =

and i, j, k are the unit vectors along the u, v, w axes.

The tangent vectors to the (curvilinear) coordinate lines at P are defined by:

G- wpowp g @.2-T0
Lo & wpoupowg 3.2-10)
;o dwp vy oy @210
From (3.2-1) one can obtain
g—‘;\= -(N +h)cos@sin\ %(—l; -(M t h)sinpcos A 2—;: cO8Y Co8 A
g—l;\ = (N + h) cospcos A ;‘; -(M * h)sinpsinA g—; cospsin (3.2-8)
gl; =0 c%(‘!o (M + h)cosop g% = ging

where M, the principal radius of curvature in the meridian plane is

a(l - €)

M 2]
(1 - €’sin“p)°

14 (3.2-9)

Using (3.2-7) and (3.2-8) it can be shown that the 31 (i-=1, 2, 3)vectors are
orthogonal, that is,
croe, o Yis 3. 2-10)

Computations involving curvilinear coordinates are greatly simplified if the

1



_)
coordinate curves and the vectors c, are orthogonal, as in this case; otherwise the

introduction of tensors will be required.

—)
From (3.2-7) and (3.2-8) it can be seen that the ¢, (i =1, 2, 3) vectors are not

- >
unit vectors; thus it will be practical to replace the c, by unit vectors ¢, (i =1, 2, 3)

having the same directions.

Defining,

o . lor
TR A

_)
> 1 ar
LZ h2 (\’(D
> 1 oar
1 dh

5
where h, represents the corresponding modulus of the vectors c¢,, or:

- -
dr d3ul? fav) [aw )\ |7

h, Y\ _(3—1) *(ﬁ) t (gi) ] (N +h)cosp

[ 2 P4 2 .
. |ar du v w .

o [l [() () (B) ] e
Sc i . L

h - EE R d—L‘l . + *}_V ) i E ) : -1

| 3h Ah Ah dh

Thus using expressions (3. 2-7), (3.2-8) and (3.2-12) in (3.2-11)

-y -3 -y

e - sinAi t cosAj

-> -) - »
e, - singcos i - sinpsinAj t cosok
_)

- - Y
€3 —- COSQCosAi + cospsinij + sinpk

(3.2-11a)

(3.2-11b)

(3.2-1¢)

(3.2-12u)

(3. 2-12b)

(3.2-12c)

(3.2-13a)
(3.2-13b)
(3.2-13¢)

B can be observed that the vectors ; (i -1, 2, 3) are of unit length and mutually

orthogonal, i.e.,

N Y1)
[T 13 R
Gt Sy 81, i 0 (7))

where 8y, in the above formula is referred to as the "Kronecker delta'.

(3.2-11)

o ‘
Thus the vectors e, form an orthonormal base in the Euclidean space ' just as

- -3

e d
do the vectors i, j, k. There is, however, one fundamental difference between the two

12



bases: whereas the T, _j’, E are fixed directions, the directions of Z,(i =1,2,3) in
general will varv from point to point because the coordinate lines are curved. This
can be seen fro11 (3.2-13) where the g, vectors are functions of A and¢. A frame
like (;1, g»,, Z\ which is parameter-dependent is called a "moving frame.' The theory
of the "movin frames of reference' was greatly extended and generalized by [Cartan,
1935] who referred to it in French as "repere mobil." For an introductory study of
the matter and some bibliography, see { Grafarend, 1975].

‘The i'e« tangular Cartesian reference frame (0, £, ) whose axes have the same
direction as tt : unit vectors g, is said to be the "local coordinate reference
frame' which :s attached to the point P. The coordinates (or components) of any vector

- -
v in this local moving frame @, &, {) are termed the local coordinates of V. Thus,

- - - -

V = ne +Ee;+les (3.2-15)

_)
R is important to note that because the vectors e, are functions of A and ¢, in general

_)
the compor:nis of 3y aremot 37m 36 oL but

X S 3X° 3

¥ - e e 2 28 28 2.2

X e et ety tesy sy (3. 2-16)
v

>
Clearly the same logic wi” apply to %(B . This dependence of the vectors e; on the geo-

- -
detic coordinates will be implied always when a vector v is written in the form vén, £, £).

2.3 The Rotation Matrix R

Denoting by [u v w]' the 3 x 1 matrix whose elements are the coordinates
-
of a free vector v int._. fixed Cartesian frame and by [n £ ] the column matrix
-»
whose elements : e the coordinates of v in the local system, the transformation of

->
components of che free vector v from a reference frame to the other is given by:

u
TR (3.3-1)
s w

13



or symbolically may be represented by the mapp'ng

R

(u, v, w)

>, £, 0)

where the rotatior matrix R of the transformation can be deduced from Figmire 2.2 by

simple geometric considerations as follows:

- sinA COS A 0
R = Ry(90 - ®) Ray(X + 90) = | - sinpcos A - sinpsinA  coso (3.3-2)
COSY oS A cospsinA  8Sino®

E must be pointed out here that 1n the following the interpretation of R will always be
that of an orthogonal transformation from the geocentric to the local system. Neverthe-
less, knowing that R is an orthogonal matrix (RR* 1 > R' R"), the inverse trans-
formation can also be written as

R’

2 (u, v, W)

m & 0

i should be noted that the rows of R are the components of the orthonurmal

vectors g, (i I, 2, 3) given in (3.2-13). Therefore it follows immediately that

I

(3.3-3)

LI e Pl
=
F R R

which gives the transformation between the two orthonormal bases. & is known that
>

the rows of R represent as well the direction cosines of the vectors e, (i 1, 2, 3),

that is, the direction cosines of the normals with respect to the three coordinate lines

or surfaces at P.

3.4 Element of Arc and Orthogonality

>
it was proved already that the vectors e, (i - 1, 2, ) tangent Lo the coordinate
lines are orthogonal.

A different way to see that the curvilinear geodetic coordinates are orthogonal

14



is computing the element of arc (element of distance) in these coordinates. From
(3.2-3)

u =u, ¢, h) v-vQA, 0, h w =wW(, ¢, h)

The total differentials of the functions u, v, w are

_ 3u du du
du = axd)na(pd(p*'ahdh (3.4-1a)
Qv v v _
dv - a)td)\*awd(o*ahdh (3.4-1b)
_dw aw . oW 3 4-
dw - axd)ua(odw*ahdh (3.4~1c)
or in matrix notation
du dx
dvl = J | do (3.4-2)
dw dh

where J is the Jacobian or functional matrix and may be expressed by:

3X dpo 2dh
_ o, v, w) _ (u,v,w) | av 3dv v
N 15 = = 3.4-3
30, 0. h) X oh | 3X dp ah @.4-3)
w o dw  w
L dA  d¢p dh

Thus the Jacobian matrix of a coordinate transformation can be interpreted as the

matrix of a certain linear change of coordinates, namely:
(dX, do, dh) —'—l——> {(du, dv, dw)
As mentioned previously, the Jacobian daterminant is not zero. Therefore
{d| 70 » Jisnot singular > J'exists.

The square of the line element in the (u, v, w) system is
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ds® = du® +dv* +dw’ (3.4-4)

Substituting above the values from (3.4-1) ene can obtain the following equation
ds® =h°dX’+hSdg +hs dh +2h dAdo +2hdedh + 2hs dhd X (3.4-5)

where the values b;, hg, hz are given by (3.2-12) and

3u du |, dv Av , Ow aw |3
= — — — A — — .4~
s [axaw+axa<p X 20 | (8.4-6a)
_fau3u _ avav , owow|?
Be = [ao 3h 30 3h 3¢ ah | (3.4-6b)
_ ] 2u du dv dv CW oW 1% )
hs'[ah 5% * 3h ax * 3h AX | (8.4-6c)

Replacing the values presented in (3.2-8) in equation (3.4-6), it is easy to find that the
necessary and sufficient condition for orthogonality is

Therefore the absence of the terms d \de, deodh, and dhd ) in (3.4-5) is the
evidence that the curvilinear coordinates (A, ¢, h) are orthogonal. The transforma-
tion is called conformal when elements of arc in the neighborhood of a point in the
(u, v, w) system are proportional to the elements of arc in the neighborhood of the

corresponding point in the (A, ¢, h) curvilinear system. That is when
ds® = dv® +dv’ +dw’ = K dX +dF +dh) (3.4-8)

Thus - formality requires
h, = hy = hg (3.4-9)
The above 15 in agreement with the fact that conformality implies orthogonality but not
viceversa.
I can be observed that equation (3.4-5) gives the linear element ds inthree-
dimensional space. Clearly when limited to surface transformations the so-called
Gaussian fundamental quantities will be present. For example, in the case of an

eliinsoid the following identitics are established:

B G = hg F = h (3.4-10)
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When F =0 the condition for orthogonality exists, and if simultaneously E =G
the transformation is conformal.

Equation (3.4-5) can easily be writ*en in matrix notation as follows:

du
ds® = [du dv dw)] | dv (3.4-11)
dw
But recalling equation (3.4-2)
dx
ds’ = [dX do dh}JJ|do (3.4-12)
dh |

Thus the transformation between two sets of coordinates in E® will be orthogonal if
the matrix nroduct of the Jacobian transpose by the Jacobian is a diagonal inatrix.

3.5 The "Metric Matrix" H

The differentials du, dv, dw may also be represented as a free vector. They
behave under transformation of coordinates as do free vector components; thus from

equation (3.3-1)

dn du
de| = R |dv (3.5-1)
dg dw

Using (3.4-2) it is possible to express the relationship between the differential
arc-length of the curvilinear coordinates along the '"coordinate lines' and their pro-

jection on the (n, £, L) system as

17



l".n dx
d£ | = RJ | do (3.5-2)
qt dh |

vhere the value of the matrix product RJ according to (3.3-2), (3.2-8) and (3.4-3) is

(N +h) coso 0 0 h, 0 0
RJ = 0 (M +h) 0 = 0 h, 0 = H (3.5-3)
0 0 1 0 0 ha

Thus symbolically one may represent
H

where the matrix of the transformation H will be called the "metric matrix" by analogy
with tensor terminology.

From (3.5-3) the following basic relation can be written:
RJ = H (3.5-4)
and using the orthogonality property of R,
J = R'H (3.56-5)

Then
J'J = HRR'H
and H being diagonal the following results:
373 =W (3.5-6)
as can easily be proved by simple multiplication of matrices.
Comparing (3.5-6) with (3.4-12) it may be deduced that the diagonality of the

metric matrix H is a consequence oi (he orthogonality of the curvilinear coordinate

gystem.
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3.6 Jacobian Determinant and ks Applications

Equation (3.5-6) provides a simple way to obtain the value of the Jacobian
determinant. Taking determinants in (3.5-6)

(33| =|w =13 |1afl=/HP but|JI|=]J]
Thus
I =1HI?
and finally
a1 =1H|=nhh (3.6-1)

where h, (i =1, 2, 3) are given by equation (3. 2-12).

B is important to mention here that while the determinants of J and H are always
equal, the matrix J is equal to the matrix H only when R = I, as can be seen from (3.5-4).
This will be equivalent to making the frame (u, v, w) parallel to the local (n, §, {)
frame through the pertinent rotations.

The functional (or Jacobian) determinant in the case of geodetic coordinates is

| | = (M +h) (N +h)cose (3.6-2)

Thus, aside from points wherecosp = 0 > ¢ = :t;l > |J l = 0, the transforma-
tion is locally one-to-one, implying that any point on the w (polar) axis is a singular
point in this specific transformation.

Equation (3.6-1) is also very convenient for the computation of elememnts of area

along the different coordinate surfaces and the element of volume between them.

dA, = hyhyd\do (3.6-32)
dAz = hyhgdAdh (3. 6-3b)
dA; = hyhedodh (3.¢-3¢)
dV = hhohadAdeodh (3.6-3d)

For the particular case of geodetic coordinates onthe reference ellipsoid
dA = MNcosodAido (3.6-4a)
dv = (M +h)(N +h)cosodrdodh (3.6-4b)
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B should be noted that the Jacobian may be either positive or negative, the
difference of sign being of the same nature as the consideration of an area or volume
and their reflection. Due to the fact that the elements of area or volume are con-
sidered positive when the incrememnus of the variables are positive, the absolute value

of the Jacobian will always be taken.

3.7 Analytic Bixpressions for the Inverse of the Jacobian Matrix

From (3.5-5) it is evident that
J' = H'R (3.7-1

which provides an analytical way of obtaining the inverse of the Jacobian matrix. Using

(3.5-3) and (3. 3-2) onc obtains

Py A 2) 1
du ov ow
Jt = 3\, ¢, h) = A, o, h) - 5_(2 0 Qfe =
o(u, v, w) (u, v, w) du av ow
3h  3h  2h
_ du 3v w |
[ _ ___sin) cos A 0 7
(N +h) coso (N +h)coso
_ sinpcos )\ sinpsin )\ CO8Q -
B "M +h " "M +h M +h @.7-2)
coS(Cos A cos@sin A sinQ
L 4

The classical way to obtain the elements of J' 1s to solve the following nine

equations:
du A du dY du dh _ .
3\ du | 3o du *'3h ou ! (3.7-3a)
dv 3N . 3v 3¢  3v 3h
— — — + - — = . -3b
v ooy Toh oy ! (3.7-3b)
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dw 3\ 3w 3¢ _ 3w dh _ v
A w o dw 3h oaw ! (3.7-3¢)
du 3\ _ 3u 3¢ _ du dh _ a
ax 3v 3o v " 3nav  ° (2.7-3d)
3u 33X _dudp  du 3h _ -
SAow "Sow Tmow (3.7-3e)
3v 3 _ 3v 3p _ 3v d3h _ -
3\ du 3 du  dh Jdu 0 (3.7-30
dv A dv 39 dv oh , .
— omam + — — e = =
S\ ow 30w ahow ° 3.7-3¢
a—w d—-x ?E ég ?-‘z a—h = R -
5X 3u " 30 ou T 3h du ° (3.7-3h)
3w 3N . 3w dp , dw dh _ .
A v o TAnay (3.7-31)
which reduce in matrix notation to
Jdt =1 (3.7-4)
or
@IH' =1 2@H"I =1 (3.7-5)

but from (3.7-1) J*=H’R, thus substituting this above, the following two equalities

can be written:

RHY =1 (3.7-6)
and
JH'R =1 (3.7-7)
Premultiplying both sides of (3.7-6) by ', which is equal to H'R,
(H*R) (R'THHYJ' = J*  or
Jt = (BT (3.7-8)

where clearly (H')® = (H?) ' due to the diagonality of H. This is anuther way of
computing J' independent of R as a function of J and H. Substituting (3.7-8) in
(3.74) the following equality is established:
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JHZ) T =1
Equation (3.7-8) gives
J = [(HQ)‘IJT]I = (JT)).H'J - (J‘\)THQ

Therefore

A

J = JHH® (3.7-9;

3.8 The Matrix R as a function of H and J

Finally it is possible to write the expressions for the rotation matrix R as a
function of the metric and Jacobian matrices.
From (3.5-4)
R = HJ' (3.8~

Substituting (3.7-8) above, the following is derived:

R = HY (3.8~2)

and thersfore the following matrix equzality holds:

HJ'= H'J' (3.8-3)
Knowing, as was mentioned abcve (section 3.3) that the elements of the rows of R
represent the direction cosines of the normals to the family of surfaces X, ¢, h
that pass through a point P, equations (3. -)) and (3.8-2) will provide genera' ‘orm-
ulas for computing the nine direction cosines of these normals in two different ways.

For example, the direction cosines of the normal to the reference ellipsoid

at a point (A, ¢, h) may be given by

cos (u, h) = ill_g :—: = hy 2—: = COSQECOBA
J
cos (v, h) = }{—3 gl—: = hy 3% = cos sin\
1 3w oh
cos(w,h)=h-:a—h--‘: d-’;:a.up

This approach will be very helpful for other curvilinerr orthogonal systems where the
matrix R cannot be obtained by simple geonietric considerations, as in the case of

curvilinenr ollipsoidal coordinatos (se¢ Section 5. 2).

(£
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4. DIFFERENTIAL CHANGES BETWEEN CARTESIAN AND
CURVILINEAR GEODETIC COORDINATES

4.1 Basic Eguations

From (3.5-2) the following basic relation can be written:

dn [dx
dt | = H| do @.1-1)
de dh

which substituted in (3.5-1) gives the fundamental differential relations between the

Cartesian (u, v, w) and curvilinear (), ¢, h) coordinates.

[ d)«“ du
do| = H'R| dv 4.1-2)
L dh dw

This is usually written for the case of geodetic coordinates as

[ dx ] du
H| do, = R| dv (4.1-3)
] dh | dw
or
(N +h)cosedA du
M +h)do = R|dv (4.1-4)
dh (n ) dw

where a particular ellipsoid is implied in the computation of N and M.
The above formula expresses the basic matrix equation relating the differen-
tial changes in the geodetic coordinates (dA, do, dh) of a point P referenced to a given
ellipsoid (a, f), d:e to differential changes in the geodetic Cartesian coordinates of
the point.
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Considering the orthogonality of R,

du | (N +h)cos@d X |
dv| = R M +h)do 4.1-5)
aw dh

It is possible to show that this equation is equivalent to (3.4-2), namely,

[ du ] dx |
= du, v, W)
dv 3(A, ©, h) de
dw dh
L . -

Clearly, if the point P()\, ¢, h) is on the surface of the ellipsoid

[ du ] NcosodA -1
dv| = R Mdo 4.1-6)
dw 0

4.2 Differential Changes in (A, ¢, h) Due to Shifts, Rotations and Scaling of the

(u, v, w) Cartesian System

As an illustration of the above theory, one can assume, for example, that it is
desired tu oktain the differential changes in the geodetic curvilinear coordinates
(A, ©, h) due to differential shift , rotation and scale changes of the Cartesian
system. Then from (4.1-4) the total contribution may be expressed as:

(N +h)cospd A du du du
(M +h)do = R dv + dv + dv 4.2-1)
dh 1 dw shirt dw rotation dw ale

Each individual differentia! contribution will be studied separately in the following

paragraphs.
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4.2.1 Changes Due to Differential Shift of the Origin

K the geodetic system (u, v, W) is shifted by the amounts 6u, 6 v, 6w, then

obviously one obtains

du 6u |
dv = Sv (4.2-2)
dw shirt 6W

Assuming the systems (u, v, w) and (x, y, 2) to be parallel, the signs of the shift
components may be given by one of the following conventions (see also Fig. 4.1):

(Geographic System) - (Geodetic System)
du (Final ") - (nitial ")
VI E ] (New ") - (Ol ") @#.2-3)
L v (Fixed ") - (Moving " )
Thus for example the transformation of coordinates
Geodetic > Geographic will be
(v, v, w) (X, ¥y, 2)
Geographic = Geodetic + (Geographic - Geodetic)
and consequently
X u Su
y |=|v |*+]bv 4.2-4)
z w Sw

In general the above sign rules will be observed on the following pages, if not specified

otherwise.
4.2.,2 Changes Due to Rotation

As is known, it is possible to relate the coordinates of the two Cartesian
systems having the same origin by the equation
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Fig. 4.1 Shifts Between the Geographicand Geodetic Systems

Fig. 4.2 Rotations Between the Geographic and Geodetic Systems
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X u-‘

y |= R|v (4.2-5)
z w
where the rotation matrix R can be written as follows
R = R @) Ry(e Ralw) =
cos «cosYP - sinwsin € sinYP sinwcos P + cos wsine siny - cos € sindh ]
= - sinwcos ¢ CO8 WCOS € sin ¢ (4.2-6)
coswsiny + s1nwsin ecos P sinwsiny - cos wsin € cos P cos €cos Y

An introductory section on rotational matrix algebra may be consulted in {Goldstein, 1950]).
In order to keep the sign convention established in the previous section, the dif-

ferential changes in the coordinates (u, v, w) due to the rotations w, €, P are given by

-
du X u u u u

dv = |yl-|v}|=R|lv | [-]v]|=[R-T]|v (4.2-7)
AW | roration| 2 w w w w

Assuming now differentially small rotations 6w, 6¢, 69 (see Fig. 4.2), it
follows
Binw ~ 6w
sine ~ 0¢€ @.2-8)

sinp ~ 6y

cosw = coS€ = cosy . |

and neglecting second-order terms, the rotation matrix becomes

] bw - oY
R -bw 1 be = Ry (4.2-9)
6y -8¢ 1
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and by means of (4.2-7)

du 0 dbw -6y u u
dv = - 6w 0 6¢ vi= O6R| Vv (4.2-10)
aw |0, 6e,5% | OY -b6¢ 0 w_l w

R can be observed that the matrix 6 R is a skew-symmetric (or antisymmetric) matrix
6R+(BR =0 4.2-11)
That is, if Or,, (i, j = 1, 2, 3) are the elements of 6 R

bry = 0 Vi =j
61’." = —61‘1, Vi # j

(4.2-12)

This represents an important property for all differential rotation matrices.
Notice that the Rs matrix given by (4.2-9) is orthogonal only up to first-order terms.
From (4.2-9) and (4. 2-10)

Ry = I +6R 4.2-13)
The condition for R ¢to be orthogonal is RgR¢" = I , but

ReRs* = (I+6R) (I*+ 6R)" = (I+86K) (I- 6R) = I- BR)” # 1

4.2.3 Changes Due to Differential Scale Changes

The changes in u, v, w dueto a differential scale change 6 1. are

du udlL u
dv = vbL | = 6L | v 4.2-14)
dw | &5, wd L w

where 6L according to the sign convention mentioned in (1.2.1) is,
51, (Geographic scale) - (Geodetie scale) (1. 2-~15)

kEquation (4. 2-14) can also be written as
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yi-{v = 8L v (4.2-16)

From (4.2-16) it is obvious that

X u
y|= @+6L)| v (4.2-17)
Z w

which implies that the § L change in scale may be computed directly from the coordi-
nates, but 8L can also be obtained from the chord distances d, and d, in the respective

systems.
x-x'
d’ = x-x)’+@-yP+@E-2" = (x-x' y-y' z-z0|y-y
z-z'
u-uv'
= Q+5L°u-u v-v' w-wll|v-v' | =(a+6L%a> (4.2-18)
w-w'
Thus
d, = (1 +6L)d, => §L = ‘1%2! (4.2-19)

Precautions should be taken, however, when in a least square adjustment, scale deter-
mination through chord distances is intended. Only an independent set of chords

should be used [Leick and van Gelder, 1975].

4. 2.4 Final Equation

Thus finally substituting in (4.2-1) the computed effects in the coordinates
u, v, w due to shift , rotation and scale changes, the following equation is obtained:
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(N + h)cospd X ‘ 6u ] 0 bw -6y u u )
(M +h)do = R 6v |+ | -6w 0 be¢ v |+6L | v
dh ( GWJ 6y X3 0 w w
(4.2-20)

which gives in matrix notation the changes in geodetic coordinates (A, ¢, h) due to shifts
(6u, 6v, 6w), rotations 6w, 6¢, 6 and scale 6L

Clearly to express dA, do, dh only in function of geodetic coordinates, equation
(3.2-1) will be substituted in (4.2-20).

4.3 Similarity Transformations

it is proper Lo point out here that if one considers only changes in the Cartesian
coordinates due to translations, rotations and scale change, after substituting (4.1-4) in

the left side of (4.2-20) the following results:

[du u 0 dbw -6y u u
Rjidv != R v | + | -bw 0 X3 v |+ 0L | v (4.3-1)
dw ow 6y -d¢ 0 w w

But according to the notation used in this report,

du X u
dv ) =1|y - |v 4.3~2)
dw Z {riml LA ST

Thus, finally after substitution of the above in (4.3-1) and omitting the rotation matrix R

X u | bu] 0 6w -6y u u
y =|lv |t |06v |+]-0w 0 §¢ v |+ 8L| v 4.3-3)
Z w éwJ 6y -8¢ 0 w w

But one c¢an algo write
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bu = Ax )

_ _ J Shifts of the geodetic system with _
ov. = Ay - { 1espect to the geographic system (4.3-4a)
bw = Az
6L = A = Geographic scale - Geodetic scale (4.3-4b)

Then one obtains the usual seven-parameter transformation between the coordinates

of two Cartesian frames.

r-xq ru Ax 0 bw -6¥ u ru
yi{=iv |+|Ay |+ |-6w 0 6e v |+ Alv (4.3-5)
_Z_J | W Az 6y -6¢ 0 w Lw
or
-xw _Ax- l> 0 bw -6y u Puq
y |=] Ay |+ -bw 0 6¢ v |+Q+tA)| v (4.3-6)
LZ | LAzd 5y -0e€ 0 w | W
or finally,
r-x Ax 1+A 6w -btb.‘ru1
y |[=1Ay | +] -bw 1+4A 6e v 4.3-7)
| 2 Az 6y -b¢ 1+A LWJ

Some authors use the notation 1 +A = A. Thus, recalling (4.3-7)

x Ax A bw -8y u
y [={Ay |+]|-bw A be v (4.3-8)
2 Az 5y -be¢ A w

which is a form of the more general similarity transformation:
X = T +ARU (4.3-9)

Comparing (4. 3-8) with (4.3-9) it is obvious that besides the assumption of small rota-
tions R ~ Rs the products of A by the rotations were neglected in the differential

transformations of the formula (4.3-8).  For a complete development of the similarity
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transformations as used in geodesy, consult the discussion in [Leick and van Gelder,
1975].

Any one of the above type transformation models is generally referred to in
geodetic literature as the "Bursa model" after [Bursa, 1966]. They have been popu-
larized as mathematical models of the type F(X, L) =0 inthe least squarc¢ solution
for computing the seven parameters of the similarity transformation between world
systems.

Nevertheless, it is unclear why several authors, among them [Badekas, 1969]
and [Krakiwsky and Thompson, 1974] credited [Molodenskii et al., 1962] with a dif-
ferent model where the rotations and scale erpansion are about some particular point
{uss Vo W) other than the origin of the Cartesian geodetic system.

In the following sections the equations given by [Molodenskii et al., 1962} will
be presented adopting the general criterion of this work. Rk will be shown that they
are not different from a similarity transformation of the form (4.3-5) except in
the way the scale is applied. Inth connection the similaritics of eliminating the
variations of scale through changes in the semimajor axis of the reference ellipsoid

will be explained.

4.4 Differential Transformations According to [Molodenskii «t al., 1862]

Before fully developing the formulas given by [Molodenskii et al., 1962},
the effect of differential changes in the Cartesian geodetic coordinates due
to changes in the size (a) and flattening (f) of the ellipsoid will be

treated.

4.4.1 Changes Due to Variations 6a and 8{

If the original reference ellipsoid parameters are changed, their effect on the

(u, v, w) coordinates can be expressed in matrix notation as follows:



[u 2w
du da 3f
av 3v ba
Ldv = 32 3T 5 0 (4.4-1)
dw bl.bf @ -a‘—”
3a df
L J
where
6a = a,w-a (4.4-2a)
6f =1 . ,-f ., (1.4-2b)
and from (3. 2-1) it is possible to compute [Rapp, 19754]:
du _ cospcos ) du _ a(l - N sin’@cos@cos A
da w A w’
dv _ cospsin) dv _ a(l - f)sin"pcos@sinA . 4-3)
da w df w’ T
dw _ (1-€)sinp dw Lo .
32 W 3f (Msin“p - 2N) (1 - f) sino
where
o .o a(l - &) a
= - a~ = N = e— 4.4~
W=1 - e sin’p M = = W (1.4-4)

4.4.2 General Equations

Literally following Molodenskii et al., [1962], their equation (I.3.2) vsing

the diffcrential matrix approach and the notation of this paper may he written as

-du—I ’—Guo ]— 0 6w -6y u-uo]
dv [ = {0v, | +| - 6w 0 ¢ V-V,
I_dw L5W°J 6y -de 0 w-woJ
r [ 2u Bu |
(N +h)coswd)\] da 3 f
+ R M +hydo |+ | oy av | |®® (4.4-5)
i dh sa dl gy
ow w
3 3 fJ

33



I b

(Uoy Vou Wole @/

(Uos Vop Wo)x Datum Origin iy

(ua’ Vi, wo) Nx at CE

. % %3

Fig. 4.3 Datum Origin Coordinates in the Geographic
and Geodetic Systems

34



Clearly in the above equation differential changes (d A, d¢, dh) in the geodetic :oordi-
nates at any particular point are considered, in addition to the changes 6a and 6f.
Before going further, it is important to understand what [6u, 68v, 06w, is.
This is not very clear in the original text and probably originated the confusion when
equation (4.4-5) was used as a model. (At this moment it is proper to mention that
in the often quoted work by Molodenskii et al., [1962] a local system different from
the one used in this paper is assumed. Appendix A contains the relationship between
the matrix notation used here and the equations in the original English translation from
the Russian).
Followin, [Molodenskii et al., 1962] the shifts between the origins of the geo-
graphic and geodetic systems !.ecome (see Fig. 4.3)

da (5, ] ’-uo i, u, du,
av | =V, | -l ve | =% ! - {]|v. | *+ [av, =
aw |, | Wo |« {wo ix Wo |« P Wo [ dw, | rot | x
3, | u, 0 6w -6y || u
=% |- v, | + [-6w 0 6e Vo (4.4-6)
| Wo |x W |y 6p -b¢ 0 Wo lu Jx

where for clarity, small subindices are used to represent the Cartesian system to
which the components of the column vectors are referred. Consequently, it is possible

to write the following relation equivalent to equation (I.3.4) in [Molodenskii et al., 1962]

du 6u, 0 dw -6y u,
dv | = | bv, |- | -bw 0 b¢ v, 4.4-7)
dw 6w, 66  -be 0 || we]

and therefore from (4.4-6) and (4.4-7) one may conclude

6u,
6v, | = VOJ -1v, (4.4-8)

=1
o
RN
[
o

bw, w,



Probably the main reason why in [Molodenskii et al., 1962) the value of (4.4-8) is not

given explicitly is that what they called ""progressive translations of the ellipsoid" are

the difference between the two sets of coordinates of a particular poim (in this case

the origin of the datum) which are in different Cartesian systems (x, y, z and u, v, w).

This difference, although rigorously correct, is somewhat difficult to visualize.

Nevertheless it is perfectly clear that equation (4.4-8) does not represent the shifts

between the origins of the (x, v, z) and (u, v, w) systems, as interpreted by some

authors when the Molodenskii equations were used as a model.

It is obvious that the

second term on the right hand side of (4.4-7), equivalent .o a rotation about (u,, v,, W)

of a system parallel to (u, v, w), is neglected when the vector [6u, 6v, 6wy is

thought to ke the shifts between the geographic and geodetic Cartesian systems. Sub-

stituting the value of [6u, 6v, 6w,]" from (4.4-7) in (4.4-5) it may be shown that

= d‘; +

du 0
~dw 0
5y -6¢

L

6w

_a__\_x
da

dv
da

dw
3a

-531)
6¢

-l Y k= w

i

.~

and finally with the assumption (A X =do =dh =0), it follows that
du
dv

X

1

u du u

vii+|dv| =]v |+

[w] o) L]

dw

[o%4
c

(%
]
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which is exactly the similarity transformation given by (4.3-5) with the notatica

du = Ax

dv = Av _ {shifts between the origins of the two coordinate systems
_ ~ with the sign convention of (4.3-42a)

dw = Az

and the replacement of the eflect of a scale change A by the change in the semi-
major axis of the ellipsoid. Inthe above equation it may i-e assumed 6f = 0.

Equation (4.4-10) is not given in the above form in [Molodenskii et al., 1962) and was
derived here only with the intention of showing that the model obtained is strictly
.. similarity transformation of the " Bursa type "  without anything special
introduced besides the scaling variation mentioned above. Later the difference
between these two scaling approaches will be fully explained.

What Molodenskii presented as expression (1. 3.3) is nothing else but equation

(4.4-9) premuitiplied on both sides by the rotation matrix R, namely

du rdﬁ] 0 6w -6y | [u
R |dv| = Ridv |+ R |-bw 0 b¢ v
dw dw 6y -6¢ 0 | |w
[ v 2w
(N +)coso dA da 3f
Sa
v Mrhdo + R Z—Z %"; (4.4-11)
dh be
w ow
da AT

4.5  Comparison of Scaling Methods by Means of 6L or 6a

Before giving the individual formulation for each method, it must be understood
that a change §L is always applied to the unit length of the Cartesian coordinate system
involved. Therefore it may be considered as scaling the space or a change in
its metric. R canbe applied either to the geodetic or to the geographic system,

depending on the adopted sign convention.
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Nevertheless, a change §a is always applied to the geodetic system and prac-

tically represents a "network scale."

4.5.1 Changes d\, do, dh Dueto a Change 6L in the Scale

These changes may be obtained very easily by making use of the relations
(4.1-4) and (4. 2-14), namely

(N + h)cosoppd udL (N +h)cospcosA§L
(M +h)do = R|v6L |= R |(N+h)cosgsinAdL 4.5-1)
dh by wd L [NQ - €’) +h]sinpb L

Finally, it can be proved that (see Appendix B)

deL = 0 (4.5‘28.)
_ Né’sinpcoso

dos, = "_—L—Mw 5L (4.5-2b)

dhg, = (@W +h)sL (4.5-2¢)

Consequently, as expected, for a reference rotational ellipsoid, there is not
any influence in the geodetic longitude due to a change of scale in the length unit of
the Cartesian geodetic system.

4.5.2 Changes dX, do, dh Due to a Change 6a inthe Semimajor Axis
of the Ellipsoid

The changes (du, dv, dw) inthe Cartesian coordinates in function of changes
of the geodetic coordinates (dA, d¢, dh) and differential changes in ellipsoidal

parameters 6a, 6 f may be expressed by

AB



[ 2u 2u
du oa of Ba (M +h)cosedA
av | =| & ov + RT (N +h)do (4.5-3)
da of
dw 61 dh
w 2w
| 32 3f |

Thus, assuming that the point (u, v, w) remains fixed in space, the effect of
differential changes 8a, 6f on (A, ©, h) is:

du  2u
(M + h) cosod A da  of 5a
(N+hdo |= -R| Y X (4.5-4)
da of
dh 6f
o ow
da of
L i
Therefore, recalling (4.4-1) and (4.4-3)
-
cosq‘JNcos A ba
(M +h)cospdA du
(N +h)de = -R |dv = -R Qs—‘%vgﬁba
dh °. dw b. - 3
(l-e !singaa
W
L J
(4.5-5)
The above matrix operations yield (see Appendix B)
"Ase = O (4.5-6a)
_  Nésinpcosg »
dos, M +ha 6a (4.5-6b)
dhg, = -Wbha {(4.5-6¢)

As in the previous case, changing the semimajor axis of the reference cllipsoid

does not affect the geodetic longitude. Nevertheloss, there are some differences
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between the two methods of scaling, as will be explained in the next section.
4.5.3 Comparison of Scaling Methods

Assume that it is desired to absorb the metric scale change in the coordinate
system by a change 6a in the semimajor axis of the ellipsoid. A positive change
6L will not alter the ellipsoid; nevertheless, the new value of the semimajor axis

(using the new yardstick due to a positive 6 L) will fulfill the inequality,

2w < @ 014 V6L>0

Thus, ba, = a - ag, <0,
therefore, 6L > 0 => Ha_ < 0,
and finally, 6a, = -abdlL 4.5-7)

Therefore, substituting the above forr.ula in (4.5-4b) and (4.5-4c),

N. g
doss = - —- Y22 51 = dos, (4.5-5)
and
dhg, = aWSL # dhs, = (aW th)6L (4.5-9)

Thus when the semimajor axis of the ellipsoid changes by the amount 6a,
due only to scale variation, namely (4.5-7), the differential changes in the latitude
are equal to the differential changes produced by a scaling of the coordinate system.
However, the differential changes in the heights are different, as cai be seen from
(4.5-9). This is in accordance with the remarks made by Hotine {1969, p. 264]:

"Most of the systematic cerror in scale of a network could be
eliminated by altering the size of the base spheroid in the geo-
detic coordinate system... However, this procedure would
vitiate the height dimension and would result in some inaccuracy
even in a two-dimensional adjustment which ignores geodetic
heights, especially if the network covers a considerable area."

The difference between the two methods of scaling is

Ab = dhy, - dhe, = hEL (4.5-10)
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which means that for points on the ellipsoid (h = 0) the two scaling methods are
identical.
R can be observed that in any case the value of A h may be neglected, as can

be shown by a simple example. Taking the values of 6L and h excessively, e.g.

8L = 6x10™° and h =5 km

Ah = 30 x10 km. = 30 mm.

Thus for all practical cases, the method of scaling followed by Molodenskii
is not different from scaling the system through changes in the unit length of the
Cartesian axes.

However, rigorously speaking, in general it is possible to assume changes
in the semimajor axis of the ellipsoid 6a and at the same time, scale changes 8L.

This, in fact, signifies that one can change the metric scale 8L of the Cartesian
system without changing the size of the ellipsoid, although every length
measured with the new scale unit will be different. This is thus equivalent to chang-
ing the metric of the space, that is, its unit of length.

On the other hand, it is also completely valid to assume a change 6a inthe
size of the ellipsoid independent of any scale change. This may be considered as a
"network scale change' but clearly the units along the axis of the Cartesian coordinate
system will not undergo any variation. That is, the unit of length (i.e. the scale of

the three-dimensional space) remains the same.

4.6 Effects of Other Differential Changes on the Geodetic Curvilinear
Coordinates

The theory given in the previous ~ections is general and may be used in any
case desired. The basic equation is (4.1-4), in which the individual changes
[du dv dw]" should be replaced by values corresponding to the particular problem
at hand. Since the number of possibilities is unlimited (note that this general approach
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may also be applied to "spat ial or three-dimensional geodesy'), in this section only

two examples will be shown.

4.6.1 Differential Changes in (A, ©, h) Due to a Change
(dA,, do,, dh) at the Datum Origin ()A,, ©,, h,)

Recalling (4.1-4), this may be expressed as

(4.6-1)

4.6-2)

(4.6-3)

4 L-4)

- cosQ,sin(A - A)

r -
(N + h)cosodA du
(M +h)do = R| dv
dh dw |,
but from (4.5-5)
-du r(N +h)cospdA
dv| = R, M +hydo
de 5 X dh R
where
1{0 = 1{1(90 - @0) 1{3(90 + Xn)
Thus:
(N +h)cospd (N + h)cosodA
(M + h)do = RR,' (M +h)do
dh | dh
and B
cos{A - A)) sin@,sin(A - )
RR,’ - sinosin(A - A) COS ¥, COS QY sin®,cos®

cososin(h - \,)

+ sin@,sinocos(A - A,)

coSs©, Simp
- 8in®,Co8VCoS(A - A,)

- cus0,8iNOCOS(A - A

sinY,s8inY
+ €08, COo8Y CO8(A - A,)

(14.6-5)

This transformation really consists first in making the local system at the datum origin

parallel to the geodetic  system through R,7 .

42

A new rotation R will finally make



the rotated curvilinear frame parallel to the particular local system at any point P.
The complete operation may be expressed symbolically by the following

commutative diagram:

R T
M2 Ex Qe —Re 5> (9, €, L),

Ro\ / R,

(u, v, w),

4.6.2 Fffect of Rotations on the Curvilinear Geodetic Coordinates

From (4.1-4) and (4.2-10)

(N +h)cosod A 0 6w -6y (N +h)cos@cos A
(M +h)do = R |-6w 0 ¢ (N +h)cospsinA
dh | 6y -6¢ 0 (N - €) +h}sin®
(4.6-6)

After the above matrix multiplications are performed and after simplification (see

Appendix C), the following three equations are obtained:

= __N€ . Ne _
dAgs = - bw+ 6((1 NTh )tamocos)u»aa{,(l N +h)ta.n(psin)\ (4.6-7a)

- .y AW +h aw +h _
dpss = - b6esini M T 6ycos M ih (4.6-7b)
dhsy = - 6 eNe’sinpcososin + 6§ Ne’sinocospcos A (4.6-Tc)

The above equations in similar form are also given in [Hotine, 1969, p. 263}. In
Appendix A the reader may find in equations (A.1-13 the effect of rotations as given
in [Molodenskii et al., 1962]. Note that equations (4.6-7) are not completely rigorous
expressions because the assumption of small rotations is implicit in the matrix 6 R.
See equation (4.2-10).

The complete rigorous expressions in matrix notation may be obtained if in
place of 6 R in (4.6-5), the matrix [R - I] is substituted, where R is given by (4.2-06).
The utility of equations of the type (1.6-6) in the application of minimal constrains to
curvilinear coordinates is discussed in Appendix D.
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5. APPLICATIONS TO OTHER CURVILINEAR SYSTEMS

5.1 Ellipsoidal Coordinates

The theory developed in Chapters 3 and 4 was applied exclusively to a case of
orthogonal curvilinear coordinates, the geodetic coordinates (A, ¢, h). R will be
shown at this time that the above theory may also be used in other orthogonal cur-
vilinear systems of common application in geodesy and geophysics, such as ellip-
soidal and spherical coordinates.

Although in both instances, the family of surfaces is triplv orthogonal, one
basic difference, however, should not be overlooked. & is simply that while the
coordinate lines and surfaces generated by geodetic coordinates are orthogonal, they
are nevectheless not confocal. In this chapter only confocal families of surfaces will

be treated. The following implications hold:
confocal ==> orthogonal
orthogonal 4> confocal

Appendix E reviews the properties of some common families of ellipsoids.

For the sake of generality, it will be convenient to give first the transforma-
tion equations between the Cartesian and general ellipsoidal coordinates (reference
ellipsoid of three parameters) from which, as is known, two degenerated cases can
be obtained: rotational ellipsoidal (reference ellipsoid of two parameters), also called
spheroidal by some authors, and spherical coordinates.

On the following pages, it will be assumed that the reference ellipsoid for the
ellipsoidal as well as the curvilinear geodetic coordinates is geocentric. Therefore
the notation (x, y, z) will be used for the Cartesian system.

The transformation equations between the different curvilinear and Cartesian
coordinates are given below. R is assumed that the reader is familiar with the basic

definitions. Otherwise [Hobson, 1931] or [Heiskanen and Moritz, 1967) can be consulted.
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Fig. 5.1 Ellipsoidal Coordinates (after [Heiskanen and Moritz, 1967.])
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H

X, B u) X (u? +E®)° cosBcos X
General ellipsoidal y [= {(u®+ Ela)%COSESiDX (5.1-1)
z u sin B Ca,6.8,)

-Esgsg ; 0sXs<2n ; E135?1‘2<°° : E2>E12>0

2
El_’ E J=> ‘ B -‘)ﬁ
L% -
- P (u® +E2)écosﬁcos A
(A, B,u) ; E=E, y | = (’l‘;:z +E3)§cosﬁain)\ (5.1-2)
Rotational ellipsoidal 2 ¥ sin 8 N
Spheroidal (e
E~0=>""T
B~y
A%, 1) s E=0 X r cos P cos A
» ’ ’
Spherical y | =] rcosysinX (5.1-3)
z r sin ¥ '

The elements of the Jacobian matrix for the transformation between general

ellipsoidal and Cartesian coordinates may be computed easily:

~

~ ~ ~y 3 * N~ Y
9%= - (u© + Ea)écosgsinx %; -(u” +E °)“sin’;§cos)& 9{= -:_u__i cosBcos)\
3 Y- 3u  (u® +E°)

9{ = (52 + Ef’)écosg(:osx §{= - (U ! Elz)%sinbsinx é{‘—‘ -:—-u——-%cosgsin’x
3N Y du  (u’ +Ey)

9—%=0 é-§='l~i‘cos a—g"‘sing

A 83 du

(5.1-4)
46



and then considering equations (3.2-12) and the above results, the elements of the
metric matrix when the reference ellipsoid hus the parameters (Tf, E, E;) are

obtained as follows:

h, = cosf[u> ’rEesin2X+15312cos?"5:]é (5.1-5a)
~2 27 2 25 2 _..2% %
hy = [u® +sin“B (E®cos“ X\ + E°s8in" )] (5.1-5b)
277 . 2%
hy = [uecosag('\‘cos A +Nsm )t' )+sinaﬁ:|% (5.1-5c)
U2 +E? U2 +ES

Assuming now E = E,, the elements of the Jacobian and metric matrices for
the transformation between ellipsoidal (rotational) and Cartesian coordinates are immed-

iately obtained

30X _ _ 2 2 % . 0X _ 2 2.8 . ex _ u .
™ (u® + E”)“cosBsin) 5 (u° +E°)*sinBcos A =~ ::—“?—;cosﬁcosk
du (u” +E%)
a-y=(’\\f2 +E2)écosﬁcos)\ o . (u® +E®)"sinBsin) & - u cos Bain)
A 3B ~ ™y 3 ;
su f{(u” +E°)
?'TZ=0 -a-z=3cosﬁ é5=:5m/.‘3
AA d ~
ou
(5-1—6)
and
h, = cosﬁ('\\;2+E2)é (5.1-7a)
hy, = <32+E’3sineﬁ)% (5.1-7b)
~0 Je! ~3 2
ha = [= cos’ B 'sin"’B]’b = [E_:t_l:;_s_l_n_g ]ﬁ =w (6.1-7c)
u'.) +E:; ua +EB

Finally, for the simple case of spherical coordinates (E = 0), the following

known relations are obtained:
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ax:— i a_x=- i .a_).(z

> rcosy sin) 3 rsinycosA e cosi cos A

oy - rcosy cos A . rsinysin A 0¥ - cosy sinA (5.1-8)

A X)) ar

0z _ Az _ 9z _ .

5—;\—0 5% rcosy - siny

and

h; = rcosd (5.1-92)
hy = v (5.1-9b)
hy, =1 (5.1-9c)

5.2 Transformations Between the Normal Gravity Vector Components

Because of the nature of the reference body, the normal gravity field is gen-
erally represented in function of ellipsoidal coordinates. The function U(;, B) is
given for example by cquation (2-62) in [Heiskanen and Moritz, 1967] for a partiocular
rotational ellipsoid with semimajor axis a, ' “~ar excentricity I, gravitational
constant kM and rotational velocity w.

Assume now that the following transformation is desired:

’ y V) —> ~9s /Ty Ve 5.2-1
(Y Yy ¥2) (‘)’n 75 ')'C) ( )
where

> - [3U 23U U

Y -grad U= (Yx’ Yys Yz )-( x"'v a—y’ a—)

That is, given the components of the vector ; (treated as a free vector) in the
geocentric system (x, y, z), obtain the components of the normal gravity vector
in a local ellipsoidal frame (?f, E, f) at the point P(X, B, :).

The above transformation will be performed through an orthogonal rotatjon

matrix. Therefore the inverse transformation (which is really the one practically
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used) is immediately available.

To obtain the rotational matrix in the transformation (5.2-1) is not
as simple by geometrical deductions as in the case of geodetic coordinates.
The main reason being that it is very difficult to visualize the connection between the
angle B and the local ellipsoidal frame (see Fig. 5.1).

In cases like this, as mentioned in Section 3.8, equations (3.8-1) and (3.8-2)

may be applied. For this particular curvilinear system, the following relation holds:
R, = H2'J,T (5.2-2)

where the elements in the matrices J, and H, are given by equations (5.1-6) and

(5.1-7) respectively. Thus

Pyﬁ Y Y
YE|= Ra|yy|= HIIT |9, (5.2-3)
_72 Y. Y.
[y .. 1/(u® + E*)%cos 8
n ~ Lk
‘)’E = 1/w(u” +E~) X
vz 1/w
L C L -
o -
~ . r “
- (ue + Ea)%cosBsinA (u? + E®)cosBcos 0 Y
- (u?+ EE)%sinﬁcos}\ - (u?+ Ez)#sinﬁsin)\ ucosB Y,
U cosBcosh / (u° + Ez)é ucos Bsin) / (u? + Ea)ﬁ sinB Y,
L J
§ T (5.2-4)

The above is also given in equation (6-11) of [Heiskanen and Moritz, 1967], although
the final result is obtained by a different approach. Observe that the notation of the

cquations presented here is in accordance with the general criteria of this report.
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After the mat.~*v « ultiplication in (5. ®-4) is performed, the rotational matrix

of the transformation (5.2-1) is as follows:

i ]

- ginA cos A 0
1 u
R. =| -—=sinfBcosA - = ginfBsinA ——————Ecosﬂ
w i A~y .
w(u® +E%)
~ ~ i
+1cosﬁcosk —Mu——-%cosﬁsin)\ sinf
w(u:; +E:3)§ w(u.: +E:3) w J

(5. 2-5)

5.3 Differential Transformations Between Cartesian and Ellipsvidal Coordingtes

The transformation between differential changes in Cartesian and ellipsoidal
coordinates can immediately be obtained trea’iig tne basic eomations of Section 4.1 in
a more general way.

Applying (4.1-3) to this specific case,

-
dAx dx
H,|dB |= R, |dy (5. 3-1)
du dz
but recalling (3.8-1) and (3.8-2)
R, = H,J," = H,J,’ (5.3-%)

one obtains



dXx [ dx
dB | = 4. dy and

1,"'R,
Ld’JJ [ dzJ

da

du
_

[}

dx
(H,)?J,"| dy (5.3-3)
dz
dx
3.0 | dy (5.3-4)
Ldz

Chserve that equation (5.3-4) was expected, if the total differential approach is recalled.

From (5.3-3) the analytical form of the inverse of the Jacobian may be computed,

giving

-

- w’gin A /cos B
- sinBcosA

ucos Bcos A

w®cos \/cos B 0
- ginBsinA :cosé
(uJ + EA“)
ucosBsin) sinB(u” + ¥)
(5.3-5)

5

5.4 General Commutative Diagram for the Transformation of Free Vector Components

Figure 5.2 represents all possible transformations or mappings between free

ve ~ comnonents in spatial rectangular coordinate systems. Eniphasis has been

placcd on the coordinat2 systems discussed in this report (mainly geodetic and rotu-

tional ellipsoidal) but the same logic n:ay be applied to any other orthogonal curvilinear

coordinate system.

For an easy recall, some of the basic matrices representec in the diagram are

given according to equation number in the following table:
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Table 5.1

Equation Numbers of Commutative Diagram Matrices

Geodetic System Rot. Ellipsoidal System
Matrix Type
Symbol Equation # Symbol Equation #
W ———— ST

Jacobian J (3.2-8) Je (5.1-6)
Jacobian Inverse J? (3.7-2) J.* (5.3-5)
Metric (Diagonal) H (3.2-12) H, 5.1-7)
Rotation (Orthogonal) R (3.3-2) R, (5.2-5)

As a simple application from the diagram, let's assume that the com-

ponents (yh , )/E » Y 3)are desired. The diagram gives immediately

g

r_ ~
31“/317T

3F / 3E

LaF/aI;J

where F is any scalar function.

-
rasF /3N
H,' | 3F /08

3F /3u

(5.4-1)

Assuming F to be the spheropotential function U, one can obtain the

—’
components of the normal gravity ¥ along the local ellipsoidal system at the point

P, B, u)
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o |3U /3B

LGU / du

(6.4-2)
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Thus the + 'ues of (Yﬁ, Y g, 'yE) can be computed readily from the metric matrix of
the transformation between ellipsoidal and Cartesian coordinates and the partials of
the known function U ('\T, B) respect to the ellipsoidal coordinates. Clearly, for a
rotational ellipsoid 3U / 3\ = 0.

Once ;(‘yﬁ, ‘yE, 'y&') is computed, it is immediate to obtain (¥, ¥y, ¥:) a8
explained in Section 3.2, through the transformation

Vo Vi ¥3) > (s 9y, 72)
n’ g7 ¢ 7
which is also implied in Fig. 5.2.

Observe that the diagram of Fig. 5.2 is commutative. This means that there
are several ways to obtain the transformation between two sets of free vector compon-
ents. The selection of the approach will depend on the type of data readily available.
For example, the differential transformation between ellipsoidal and geodetic coordi-
nates may be performed according to the following possibilities.

~ TRR.T
(dXx, dB, du) HRR M, (dA, do, dh)

~ J'R,"H
(dx, dB8, du) ———=&—2—> (4]}, doy, dh)

1
(dXx, dB, du) ——"—B-J—’——> (dX, do, dh)

1

(d\, d8, du) ——————> (dA, d¢, dh)

where the matrix of the transformation is given by:

~ n
1 0 0
3y =1 o (& + E*)’sinBsino -3 +E%) 2cosBsine
" +@ cosBcose) / (M +h) +8inBcos] / (M +h)
1 -
0 - (u° + E”)“sinBcoso u(u’+E”) écosﬁsinw
+U cosBs8ino + sinBsing
L (5.4-3)

Notice that there is no change in the transformation of dX between ellipsoidal and

geodetic coordinates, as cxpected.



5.5 The Rotation Matrix ‘R Between the Geodetic and Ellipsoidal Local Systems

At this point it will be interesting to study the -asformation between the local
geodetic and ellipsoidal systems. That is, we are interested in obtaining the rotation

matrix °R of the transformation

5> R

., £, 0) > M, €,0)
From the diagram o Fig. 5.2,
7 ~
Kl K
£ | = RR|E (5.5-1)
g ¢
- J L -
Thus, after matrix multiplication,
1 0 0
R = RR,” =] 0 m n (5.5-2a)
0 -n m
where
1~ ~ A2\ é
m =~ [u(u” +E") cosBcoso +sinBsiny) (5.5-2b)
1 o~ 2 '% .
n == (-u(u' +E") cos 8siny + sinfcosy) (5.5-2c¢)

_’
The matrix ‘R will transform components of the normal gravity vector v from the

local ellipsoidal to the local geodetic system, or viceversa. The orthogonality of ‘R

may be proved easily.



Notice that ‘R represents a counterclockwise rotation o along the ;1‘ axis (Fig. 5.1b)
where

cos = m
and

sin = n

This can also be shown by an independent approach considering the orthonormal bases

- 53 > 3> 3> > i
(e;, €2, €3, and (€,, &, €3) along the respective local frames.

Clearly,
¢ 2 - 2
cos @ = —,Ca . e: B —’03 . ei
‘c'e!-‘:‘zl \l‘:i‘-‘éal

The components of the vectors of the base 2, (i=1, 2, 3) may be found in
equations (3.2-13). They are also given by the row elements of the matrix R in
equation (3.3-2); the components of the vectors in the base g, (i=1, 2, 3)are the
elements of the rows of R, given by (5.2-5).

Considering that these bases are orthonormal, that is, all the vectors are

unit vectors, it follows that

5

- - - -»

2 l ~ Ay < . .
COSO = e3. €5 = €5. 83 = a[u(u‘ +E") “cosBcoso + sinfsiny)

Therefore, after algebraic manipulation and simplification,

1 %

sin“a = 1-cosa = — [(u” +E®)
u® +E®sin®B

sinBcoso - ucos Bsing]”

Thus, finally

H

. 1 ~ o~ -
sino = = [sinBcosv- u(u’ + L) ° cosBsiny]



5.6 Transformation between Local Geodetic and Local Astronomic Systems

The same criterion of the above section may also be applied to obtaining
the transformation of vector components between the local geodetic (0, £, {)
and local astronomic (n*, £*, {*) systems.

Clearly in this case, tke mapping

(ﬂ»gs £) >m* E*, L")

will be obtained as follows:

n* n
E*| = R*RT| ¢ (5.6-1)
g* ¢ _|
where
R* = R;1(90 - 0*) R5(90 + 1 %)
@ * = reduced astronomic latitude (5.6-2)
A * = reduced astronomic longitude
" and — -
cos(A* - ) sinpsin(A* - X) - cossin(A* - A)
R*R' = |~ sin@Bin(A* - A) cospcos* sinpcos*
+ ginpsin@*cos(A* - A) - co8Y 8inY*cos(A* - )\)
cosgsin(A* - \) cososin@* sinosing*
- sinpcos@*cos(A* - A) + CcO8(COBY*CO8(A™* - A)
B (5.6-3)

Assuming now small differences between the geodetic and astronomic coordinates:

o+6p (5.6-3a)
A+6A (6.6-3b)

(D*
A¥

and with the simplifications
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sinA*-A) ~ 6A sin(p* - ) =~ b0

cos(A* -A) =~ 1 cos(p* -©) = 1 (5.6-1)
sinp* ~ sine cosp* . cOSO
it follows
1 sinob A - cosbA
RR*" o - sinob A 1 - 60 = Rg* (5.6-5)
Los@bA 6p 1

This is really the case when one wants to transform between the local geodetic
(n, £, €) and local astronomic (n*, £*, £ *) systems at some particuiar station
P where the deflections of the vertical n' and £' are known.

‘Then,

o*-po =060 (5.6-6n)

I

(A*¥ = X)cos® = BAcoso =" ginpbX = n'tano (5.6-6b)

I

17'

Therefore, substituting in (5.6-5)

1 7 'tano -n'
RR*" o -n'tane 1 -€' | = Ry' (5.6-7)
n! £l 1

Finally, if differential changes in (1, § , {) due to small rotations of the local geodetic
system by amounts (66X, 6¢) at the point (A, ¢) are sought,

dn U]
d§ [ = [Re*-11 ] & (5.6-8)
dg

where Rg* is given by (5.6-5), thus

dn 1 0 8inbA - cospb A rn ‘!
dE | = | - sinvbA 0 -6 ! £ 1= OR*1 ¢
d(_j cosb X 6o 0 | LC J LC



6. SUMMARY

The present work uses a general matrix approach in reviewing some basic
differential transformations between Cartesian and curvilinear coordinate systems.

The methods discussed here are applicable to any type of orthogonal curvi-
linear coordinates. Nevertheless in this report only geodetic and ellipsoidal (rota-
tional) coordinates are examined.

As an application of the theory, differential changes in geodetic coordinates
due to shift, rotation and scale of the geodetic system are found. The same results
may be obtained employing other methods, such as the total differential approach or
tensor calculus.

This study also tries to clarify the confusion in receit geodetic literature re-
garding the so-called "Molodenskii model, ' which is used in the least squares solution
of the seven transformation parameters between world and geodetic (datum) systems.
Careful consideration of the differential equations given in [Molodenskii et al., 1962]
shows that the model attributed to them is not impli. . in t .eir work.

After defining three basic transformation matrices (rotation R, metric H and
Jacobian J), mappings between differential changes in the Cartesian and orthogonal cur-
vilinear coordinates are established. This is illustrated by a gencral commutative dia-

gram (Fig. 5.2). As an example, the following differential transformaticn is presented:

(d\, dB, du) =——_(dX, do, dh)
(To the best knawled, o of the author, the transformation matrix of this mapping is
given here for the fi. st t*:m>) Thus, it 1s possible to obtain differential changes in
the geodetic coorcdinawes 2! a point F(A, ©, h) P(XA, 8, u), when the cllipsoidal
coordinates change differentially or viceversa.

As an immediate result of the above-mentioned diagram, it is possible to obtain
the components of the normal gravity vector in the local geodetic system; thus the com-
ponent of attraction along the geodetic normal can be found.

Finally, the rotation matrix SR between the local geodetic and lucal ellipsoidal

frames is examined.
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APPENDIX A (Referenced in Section 4.4.2)

A.l  Matrix Form of the Equations Given in [Molodenskii et al., 1962]

Those acquainted with the English translation of the work [Molodenskii
et al., 1960)  know that the approach followed there uses the strict procedure of
differentiation of curvilinear coordinates on practically the same line as was intro-
duced in the classical work by Lamé [1837]. Therefore, no mention of local or mov-
ing frames is evident in the Russian translation. Thus, in order to change over to
the matrix notation of this report, a correspondence between fr..mes and their rota-

tion matrix must be established. This is shown in Fig. A.l.

Geodetic reference
ellipsoid (a, b)

Fig. A. 1 Local Geodetie Frame in Moloder it
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Thus the rotation matrix R may be written:

COSWO S A cososin) sin@
R = R,(-¢) Ra(N) = - sin\ co8S A 0 (A.1-1)
- sin@cos A - sinpsin A cos Y

In the equations given in {Molodenskii et al., 1962] the differential changes (da, db)
in the semi-major and semi-minor axes of the reference ellipsoid are introduced.
However, in Section 4.4.2 of this report the flattening was used instead of b, thus

the following substitutions must be taken into consideration

=270 5 poasat (Aa.1-2)
a
and differentiating above
db = da-adf-fda =2 db = da(l f)-adf (A.1-3)
Therefore
df Q—D-gil--d-b > df=l—3-.da—d—12
a a a a
and finally
b/da db
= (= - == (A.1-4
df a(a - ) (A.1-1)

The exact correspondence between equation (1.3.2) in [Molodenskii et aL, 1962] and the

matrix notation used in this report is as follows (see also Eq. 4.4.5):

dx~| dx, 0 €, - € Px—xo dh !
dy | = {dy, | + | - ¢ 0 €x y-yo| + IR" | (N +h)cosodX
dz dz, Le, - € 0 || 2-7% (M +h)do

ax ax

da df da

1 3y 3y b/da db
da 3 f =\~ =
L:\ K b

3z 3z

da af

- - (A.1-5)
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where now from (4.4-3), making use of (4.4-4), (A.1-2) and

1-¢€ l-)v
a
"~ possible to write

3X _ a . 2 .
3t i Msin“@cos@sin X
oy _ 2 Msin®pcososin A
3 f b
0z _ t_) (M-aN - Mcosaw)sinw
Af a

(A.1-6a)

(A.1-6b)

In accordance with the notation in [Molodenskii et al., 1962], the following

equalities are established.

TR
[V
b=}

)

e

(A.1-7)

(A.l-8a)

(A.1-8b)

Premultiplying both sides ¢ equation (A.1-5) by the rotation matrix R and

recalling (4.4-8), equation (1. 3.3) in [Molodenskii et al., 1962] follows immediately,

dx dx

ol

R | dy .’
!\dz i_ €,

€2
0

_ex

+ iR
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—eyl X i‘ dh _}

y |+ { (N +h)cospdA

OJ Z (M +hydo
3a af .

3y oy 2
3a of 1_)(d_a_gp)'
30 ax |LUR ¢ J
2 af

(A.1-6c)

. (A.1-9)



k canbe| «~ 1that Equation (A.1-9) corresponds to (I.3.3) given in [Mclodenskii et al,1962)
Fc ¢ mple, it is immediate to show that the terms corr~sponding to the rowations

in (. 9) are equal to the ones presented by Molodenskii et al., [1962].

(1) 0 sz - €y X l
@2 1=R |-¢ 0 €x y (A.1-10)
3) & - & 0 L z
€cOS(Cos A cossinA sing 0 €, - € x
= - sin) cos A 0 - €, 0 € y
- singcos A - sinosin A cosQ € - € 0 z
- cospsinl ¢, +sinQe, CcoS(CosS A€, ~ sinpe, - cosSPcos A€, +cospsin)e,|l x
= - COS A€, - sin)e, sin\ €, +cos A ¢, v
sinpsinl €, +cosve, - sSinOcos A€, - cosQ& sinpcos A€, - singsinA¢_|| z
but
X -‘ (N +h) cospcos A (N +h)cos@cos A
y | = | (N +h)cososinA = | (N +h)cos@sinA
z [NQ - €°) +h]sino <N E—: + h> sino
thus
(1) = -(N +h)cog®psinicos \¢, + (N + h) sinocospcos A¢ + (N +h) cos*osinicoshe,
-(N +n) sinpcososinA €, —<l—): N + h)sinwcosocos Ae,
a
b2
+( = N +h>sin<.ocos<psin)\€,
= Asinocoso(f,cosX - € sin})
where
2 2 2 _ 42 AR
A = (N+h)-("%y N+h>= N/l-l%): NP _a-b
a a a p
therefore
1 = a p‘ sin@cosy (€, cos X - €,8inX) (A.1-11a)
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Now

) . b .
(2) = - (N +h)cospcos ¢, - (N +h)cososin“Ag, +<55 N *h) sinpsir \ €,

+< g;— N +h> sinocos A€,
b2
= ~(N+h) coswcg(; N+ h) sino(€,co8 A + €,8in )

and
(2) = - (N +h)cos©Oe€, +z(€,co8 X + €,8ind) (A.1-11b)
Finally,
(3) = (N +h)sinwc..wsinkcos A€, + (N +h)cos®ocos A€,
- (N + h)sinocososincosA €, - (N +h) cos®osin\ e,
+[N(1 - &) +h]sin°ocos A€, - [N(l - €°) +h]sin”©sin\e¢,
= B(€,cos X - €,sind)
where
B = (N +h)cosPo+ [Nl - €) +h]sifo = N +h - Ne“sin®0 = N W? +h=p +b
Thus,

(3) = (p +h)(e,cosh - €sin}) (A.1-1lc)

To conclude, one may write the effect of differential rotations ¢,, ¢,, €, onthe

geodgtic qoordinates as given bv Molodenskii et al., [1962]

(N +h)ycosodd = - (N +h)cospe, + z(e,cosk + €,8in ) (A.1-12a)
(M +hyde = (p +hy(€.cosX ~ e sin ) (A.1-12b)

a -bh .
dh = SNV COS (€, COS A - €,8inA) (\.1-12¢)

p
These equations are equivalent to (+.6-T) with
€, b €. By €, buw

and taking into account (A.1-T) and (A, 1-%)
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APPENDIX B (Referenced in Section 4.5)

B.1 Differential Changes in (A, ¢, h) Due to a Change 8L in Scale

From (4.5-1)

[(N +h) cospd A ,: sinA cos A 0 (N +h)cosvcosAdL 1
(M +h)do = | - sinpcosA - gin@sinA cos® (N +h)cososinAd L
L dh JaL L cosSQcos A cosYsin) sino [NQ - ¢) +h]sinob L

After matrix multiplication
(N ~h)cos@pdAg, = - (N +h)cososinAcosA8L + (N +h)cospsinAcosASL = 0
Thus,
dlg, = 0 (1.5-2a)

- (N +h) sinpcosocos"A6L - (N +h)sinocos@sin® A5 L
+ [N( - €") + h] sin@cospS L

(M +h)dos,

- (N +h)sinpcosobL + (N +h)sinpcosobL - Ne’sinpcospbL

= - Ne’sinocosobL
Therefore
_  Ne®sinocoso -
dos = M+ 6L (4.5-2b)
Finally,

dh

(N +h)codwcos® A6 L + (N +h)cos”osin"A8L + [N(I - €°) +. 1n‘p6L

(N +h)cos”@bL + (N +h)sin” ©bL - Ne’sin” 8L
(N +h)8L - Ne’sin’ 8L
(N1 - €’si’0) +h]6L

0

but making use of equations (4.4-4) it follows that

dhg = (aWw +h)6L (4.5-2¢)
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Differential Changes in (A, ¢, h) Due to a Change 62a in the Semimajor Axis

B.2
of the Ellipsoid
From (4.5-3)
B B - 7
(N +h) cospd A ] - sin\ cos A o | 0____08(&00__5)t 5a
(M +h)do = - | -sinpcosA - sin@sin\ o8 cosgwsin)\ ba
-~ 2 :
N dh Joa | cosocosA cososind  sino | | (_l__‘;_)i‘_“ﬂ ba_
(N +h)cosod )\ s, cos@sinAcosA 5a _couspsinAcosA ba = 0
W W
Thus,
dAs, =0 (4.5-6a)
3 2 s ai pe] _ .2
(M +h)dos, = Sin@cosgcos’ A . - sinocososind . (- €)singeose
sinpcosp , (1 - €°) sinpcos®
W 6a W 6a
_ €’singpcoso ba = N¢' sin(pcosmaa
W —
Therefore,
N e’ sin@cos® o
™M e V¢ .5-6b
Finally,
2 2 2 2 2 A
_ _cos"pcos A _cospsin" A . (1 -¢€)sin©
3 K .2
W 6a W 6a
- 1 - ée°sin’
= - W 6a
Thus,
dhs, =-Wba T 6e)
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APPENDIX C (Referenced in Section 4.6)

C.1 Differential Changes in (A, ©, h) Due to Small Rotations 6 €, 6y 6w

From (4.6-5):

(N +h) cosod A 0 6w -6y (N +h)cospcos A
(M +h)do = R |-06w 0 6¢ (N +h)cospsinA
dh X 6y -b¢ 0 [N( - €°) +h]sin®
- cosAbw -sinA\fw sin A6y + cos A be
.
- sinosinA dw - sir.ocos AHw sin@cosA by (N +h) cosocos A
+cosobY - cospde - sinsinAb ¢ (N +b)cospsinA
- cososinAdw cosocos Afw ~ cosocosAb Y [N(@ - ¢) +h]sino
+ sinp 6y - sinpbe ~cosVsinAb e

- (N +h)cos@cos Abw - (N +h)cososin’Abw
+ sin Asin® 6§ [N(1 - €) +h] + sinocos A6 [N(l - €°) +h]}

(N +h)cosodAss

[

- (N +h)cosobw ' [(N +h) - N¢ ]sino(sinA by + cos A de)

Then

(N +h)sing ~ N&®sino
(N +h)coso

dAsg - fw+ (sinA6 ¢ + cos Afe)

2

Ne
- +t -
6w amo(l NI

i

>(sin Ay +cosAbe)

Thus, finally:

Neé° ~ Ne® )
disg = -0w+ e (1 "R +h)tantpcosk +6d»<‘1 "R +h>tamosm>\ (4.6-7a)
(M +h)doge = (N +h)cosocosAsinosinAdw+ (N + h)cos ¢cosAby

- (N +h)cos@sinAsinocosAbdw- (N + h)cos’vsinAd e
+[N(I - ¢)) +h]sin ©cosAdy - [N(l - ¢) +h]sin’osinA b€
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(M +h)doss = (N +h)cos’@cosAby + (N +h)sin’pcosAdy - Ne° sinﬁtpcos A6Y
- (N +h)cos®psinA6e - (N + h)sin’psinA 8¢ + Ne’sin'psinAbe
= BhcosA[(N +h) - Ne“sin-@) - S esinA[(N +h) - Ne&’sin’ ]
But,
(N +h) - Ne®sin®o = N(l - €’sinp) +h = NW° +h = W‘?wz +h = aW +h
Therefore,
M +h)do = 6PcosA(aW +h) - 6esinA(aW +h)
and finally,
_ . aW+h aW +h i
dpss = - HesinA TR +8ycosA M +h 4.6-Tb)
dhgr = - (N +h)cospcosAsin\dw + (N +h)cos@cos Asingd P
+ (N +h)cos®¢sinAcosAdw- (N +h)cososinAsing be
- [NQ1 - €°) +h]sinpcos@cosAby +[N( ~ ¢°) +h]sinpcossinAbe
= - 6y sinpcospcosA[(N +h) - N&€ -~ (N +h))
+ 6 €sinocososinA\[(N +h) - Né&® - (N +h)}
Thus:
dhga = - beNe’sinpcos@sin) + 6P Ne’ sinpcosocos A (4.6-Tc)
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APPENDIX D (Referenced in Section 4.6.2)

D.1 Inner (Minimal) Constraints in Curvilinear Coordinates

D.l.} Imtroduction

Papers on minimal constraints and their application to geodesy are abundant
in the literature. The basic principles introduced here follow [Pope, 1971} where the
interested reader can consult the fundamental references on this topic.
It is well known that in most geodetic problems the set of normal equations
NX +U =0 (D.1-1)
is a singular system when the original observation equations F(X, L) =0 do not con-
tain scme peculiar constraints.
In the specific case of a spatial network the following relations hold
.N, => Rank(N) = r (D.1-2)
where r<n and e=n-r="7
The value e is generally called the rank deficiency of N or the degrees of
freedom of the network (not to be confused with the concept of degrees of freedom
a 1east squares adjustment [see Uotila, 1967}).
As a consequence of (D.1-2)
! N | =0==>N is singular
One way to solve equation (D.1-1) in this casc is by bordering the normal matrix

N and solving the system:

N E X - U
E' o VR I (D.1-3)

where _E, isthe basis for the solution space (null space of N) of the homogencous
equation. Therefore

NE =0 N.1-4)
Obviously property (D.1-4) also implies

AE =0 (D.1-5)
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The complete solution of the normal equation (D.1-1) in the case of singularity is:

X = X,+EB (D.1-6)
where
X, = any particular solution of NX,=-U
and B, EB = complete solution of the corresponding homogeneous equation
NX=0.

Minimal constraints are the smallest number of constraints e that produce a

nonsingular matrix M, and minimizes X' X,

N E
M= E' o (D.1-7)

Of all the minimal constraints possii’., some have simple geometric interpretations;
this subset of minimal constraints is called "inner constraints ' [Blaha, 1971].

As an illustration, assume that in E° only angles are measured in order to
establish a network of points. Clearly, the degrees of freedom of this network will
be seven, if one considers that translations, rotations and scale variations will change
the coordinates of the points, although without affecting the values of the measured
angles. In other words, one may sa_ that coordinates are not estimable quantities.
Thus, in this example

e=T +2 ¢S=17

where
T = number of constraints required for origin =3
R - number of constraints required for oricntation - 3
S - number of constraints required for scale =]
Therefore,
e = (Ey Es Ey) 49 (D.1-8)

ax3 nx3 nxl

D.1.2 Inner Constraints in Rectangular Coordinates

Still following {Pope, 1971] the set of inner constraints when rectangular coordi-

nates are used, may be obtained throvgh the differential changes in the Cartesfan
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coordinates due to translations (shifts), rotations and scale, that is,

— -

dx
dy
dz |,

b -

rdx ]

dy
Ldz R

rdx ]
dy

L 42 s

Thus, one can write:

X X0
y =1 ¥
Z 1 Z,

In the same way, the inner orientation constraints can be found,

—

L.

P

Ax

Oy
Az

0
-dw

6y

6L

Xo

Z, 1

bw -6y X
0 ¢ y
-b¢€ 0 z
X
y
z
X X,
=>|y =y, | *
z 1 Zo 1
0 Ax
0l ; B = Ay

1}, LAZJ

[
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(D.1-9a)

(D.1-9b)

(D.1-9¢)

(D.1-10)

(D.1-11)

(D.1-12)



Therefore,

0 -z y
ER& = Z 0 - X H B
-y X 0,

For the inner scale constraint one has

X X, X
y = 1Y + 1y 6L
zZ |4 Zo |14 Zz |4
Thus,
X
Es, =| v and B = 6L
Z 1

Finally the matrix (D.1-8) is given by

1 0 0 : 0 ~Z y

E, = 0 1 0 | z 0 -~ X
3 x 7 l

0 0 1 | -y X 0

D.1.3 Inner Constraints in Curvilinear Luordinates (Spherical Case)

¢
6y

Sw

(D.1-13)

(D.1-14)

(D.1-15)

(D.1-16)

Curvilinear coordinates are always referred to some basic surface which

introduces restrictions in the number of degrees of freedom needed for solving the

network singularity.

For example, in the case of a flat surface (plane), the degrees of freedom of

an angular network are only four,

e =T +R+8 = 2+1+] = 4
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This is also true for spherical networks,
es = 4
Assuming that the scale of the spherical network is fixed through the radius r
of the sphere, only three constraints are needed to resolve the singularity.
Clearly the degrees d freedom in this instance are three rotations along the x, y, 2
axis. Thus, applying (D.1-9b) to the case of spherical coordinates, one can write

the following from (4.6-6) with

h =0, M=N-=r, u=x, v=y and w=z
— - —
rcos@dA 0 bw -6&1 l— X
rdi = R |- bw ] 6e y (D.1-17)
dh 6y -b¢ 0 z
- . L ,
or N
rcosodA 0 -z y be
rdo = R z 0 -x oy (D.1-18)
dh - 0 bw
s ) Y X i
Therefore,
0 -z y 664]
Er = R z 0 -x | and B = | 6Y (D.1-19)
-y X 0 GwJ
Knowing that
X r COS®¥ cos K“
y | = rcosQsi= A (D, 1-20)
A rsing
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Thus finally,

r cos Asiney r sinAsino - T Cco8Q
Er = -r sin A r cos A 0 (D.1-21)
0 0 0

Assuming that the parameters in the normal equations are given by the vector maotrix
X = [dA, do; dAz dez ... dA, d@;... dx, do,] (D.1-22)

The set of submatrices Es; required in order to avoid singularity are given in the

following form:

cos AtanQ sin Atano -1
Eq, = (D.1-23)
243 - gin A CoS A 0

The use of the submatrices Egx; inthe bordering of the normal matrix N for the
solution of the singular systi:l;\scan be interpreted zeometrically as in the rectangular
case. It will give the "best" orientation to the spherical triangulation with points (A, ¢),.
When only local networks on a sphere are involved, it will be more appropriate
to rotate about a geocentric Cartesian system parallei to the local frame (n, §, {), at

the center of the network. In this case the following transformation applies,

be be,
6 | = RS | 6¢, (D.1-24)
dw bwoJ

and after substitution of the above in (D.1-18) one has the matrix equation,

rcosodA r 0 -7 y Gco‘l
l
rdo = IR Z 0 -x | RS | 8¢, (D.1- 25)
dh J -y X 0 duy J
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or

0 - X y ‘l e,
Es, = R zZ 0 -x | RS =Es R,); B =|68y, (D. 1-26)
- X 0 bw
y e o
That is,
F rsinosin(A - A,) - r(sinysin®,cos(A - A ;) r(sinpcos ©,co8(A - A,) _]
+ cosSCo8Q,) - 8inv ,co8¢9)
Er, = rcos(i - A,) rsin@,sin(x - A,) - rcos,sin(x - A
0 0 0

(D.1-27)
and finally, when the parameters are given in the form of (D.1-22) the mairix
- E, (e = 3) is composed of the following submatrices:
sin(A - A,)tano - tanEsin@,cos(A - \,) tancos® ,co8(A - A,)
+ COSQ, - sing,
E R oy =
2x3 cos(A = X,) sino,sin(A -~ A,) - cos8Y,8inA - A,)
4
(D.1-28)
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APPENDIX E (Referenced in Section 5.1)

E.l1  Families of Rotational Ellipsoids

E.l.1 Confocal, Similar and Quasi-Parallel Ellipsoids

The following relations -. e immediately obtainable:

p ada - bLdb
E=va®-b® => ¢E =222 {E.1-1)
Va® - b?
_a-b 0 .e._b/da db

a¥a® - b
From the above bacic relations, it i~ “ossible to cefine the following types of ellipsoids:

Confocal Ellipsoids. A family of ellipsoids is callea confocal if

E =constant ==> dE = 0 (E.1-4)
From (E.1-1) the condition for corfocality is found immediately,

ada = bdb => 92 - 4P (E.1-5)
b a
or
a
db = l—)da (E.1-6)
Substituting praperty (E.1-5) ina (E.1-2) and (E.1-3) one has,
N bQ - a.’) _ E.Z .
df, = =75 .a = PRI da (F.1-7)

and
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mml ol

de. = - =, da (E.1-8)

which is also obvious from the differentiation of e = g for E = constant.

Similar Ellipsoids. The same "similar" is applied to a family of ellipsoids

when
f l d: (E.1-9)
ot | = constant => o, ; = 0
e de (E.1-10)

From (E.1-2) or (E.1-3) the similarity condition follows immediately:

bda = adb = d;a = (% (E.1-11)

and therefore,

db =

b
- 1-1
ada (E.1-12)

Substituting the above equation in (E,1-2) and (E.1-3) one has

dE, = eda =V2f-fda ‘E.1-13)

Obviously, the same result is obtaired by differentiation E = ea with e = const.

Quasi-Parallel Ell, ,oids. A family of ellipsoids is called "quasi-parallel"

(the author was unable to find anywhere in mathematical literature a name for this

family) if the foilowing property liolds:

da = db (E.1-14)
This implies:

f,a;, = a-b = constant (E.1-15)

That is, tor any famiiy Jf quasi-parallel eli.psoids, the product of its flattening by
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its semimajor axis is constant. The value of the constant is the difference between
the semimajor and semiminor axes of any ellipsoid iathe family.

From (E.1-1), (E.1-2) and (E.1-3) it is possible to obtain

dE, = gda =2 Pyg, (E.1-16)
b-a £ df da
- N - - p— — - — 'l—
df, —ag—da ada > f 2 (E.1-17)
_ b /g-Tl: )
des = - = ./ T, da (E.1.-18)
The following inequalities hold:
' dbg | <! db, | <! dbg | (E.1-19
dE, | < | d¥s |
v df ) <] df |

idep‘<‘decl

E.1.2 The Variation dh of the ueodetic Height
After matrix multiplication equation (4.5-4) gives:

dh = - Wda + 3“;—'—9 sin“@df (E.1-20)

Therefore, the variation fh of the geodetic height, according to tie different
cases mentioned in the previous section, may be obtained.
a) Confocal case : dE = 0
Substituting tne value of df given by equation (E.1-7) in (k.1-20), after

simplication one has:

dne = - dﬁ;‘ (1.1-21)
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b) Similar case : df = 0
Obviously, from (E.1-20):
dhg =~ Wda (E.1-22)
c) Quasi-parallel case : da =db

This case, although more involved, is also easy to obtain:
dh, = - Wda + &3 5in20da
aw
or
a-(a - b) sin"®

dhy=- L da (E.1-23)
va®-(2° - b)sin‘o

As a consequence of (E.1-23) one concludes that the variation of h in the case
da = db is not constant. This is the primary reason for the name "quasi-parallel"”
for this family of ellipsoids.

From (E.1-23) the maximum value of dh, is obtained at

a
© = arc s!n#a 5 (E.1-24)
where
dhyw = 22D 4. (E.1-25)
a+b



